2022 H2 MATH (9758/02) JC 2 PRELIMINARY EXAMINATION SOLUTIONS

Qn	Solution
1	Differentiation and applications
(i)	$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} - \left(y + x \frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2e^{2x}$
	$\left(3y^2 - x\right)\frac{\mathrm{d}y}{\mathrm{d}x} = 2e^{2x} + y$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\mathrm{e}^{2x} + y}{3y^2 - x}$
	· ·
(ii)	When $x = 0$,
	$y^{3} - (0) y = e^{2(0)} + 7$ $y^{3} = 8$ $y = 2$
	$y^3 = 8$
	y = 2
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\mathrm{e}^{2(0)} + 2}{3(2)^2 - 0} = \frac{4}{12} = \frac{1}{3}$
	Equation of tangent to the curve at $x = 0$:
	$y-2=\frac{1}{3}(x-0)$
	$y-2 = \frac{1}{3}(x-0)$ $y = \frac{1}{3}x + 2$

Qn	Solution
2	Complex Numbers
	$ z = \sqrt{(-\sqrt{6})^2 + (-\sqrt{2})^2} = \sqrt{8} = 2\sqrt{2}$
	$\arg z = -\pi + \tan^{-1} \left(\frac{\sqrt{2}}{\sqrt{6}} \right)$ Im
	$\arg z = -\pi + \tan^{-1} \left(\frac{\sqrt{2}}{\sqrt{6}} \right)$ $= -\pi + \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$ $= -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$ $z = -\sqrt{6} - i\sqrt{2}$
	$z = -\sqrt{6 - 1\sqrt{2}}$ $= -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$ Method 1
	Method 1
	$\left \frac{\mathrm{i}zw^2}{w^*} \right = \frac{(1)(2\sqrt{2})(3)^2}{(3)}$
	$=6\sqrt{2}$
	$\arg\left(\frac{izw^2}{w^*}\right) = \arg(i) + \arg z + 2\arg w - \arg(w^*)$
	$=\frac{\pi}{2}-\frac{5\pi}{6}+2\left(-\frac{5\pi}{7}\right)-\left(\frac{5\pi}{7}\right)$
	$=-\frac{52\pi}{21}$
	$\equiv -\frac{10\pi}{21}$
	Method 2: Using exponential form 5π
	$z = 2\sqrt{2}e^{-\frac{5\pi}{6}i}$
	$w = 3\left(\cos\frac{5\pi}{7} - i\sin\frac{5\pi}{7}\right) = 3e^{-\frac{5\pi}{7}i}$
	$\frac{izw^2}{w^*} = \frac{e^{\frac{\pi_i}{2}} \left(2\sqrt{2}e^{\frac{-5\pi_i}{6}i}\right) \left(3e^{\frac{-5\pi_i}{7}i}\right)^2}{3e^{\frac{5\pi_i}{7}i}}$
	$ \begin{array}{c} W & 3e^{\frac{7}{7}i} \\ = 6\sqrt{2} e^{\left(\frac{\pi}{2} - \frac{5\pi}{6} - \frac{10\pi}{7} - \left(\frac{5\pi}{7}\right)\right)i} \end{array} $
	$= 6\sqrt{2} e^{\frac{-52\pi}{21}i} \equiv 6\sqrt{2} e^{\frac{-10\pi}{21}i}$
	$\left \frac{\mathrm{i}zw^2}{w^*} \right = 6\sqrt{2}$
	$\arg\left(\frac{izw^2}{w^*}\right) = -\frac{10\pi}{21}$

Qn	Solution
3	Graphing (Rational Function), Definite Integral (Volume)
(i)	
	$y = \frac{x}{4 + x^2}$ $y = 0$ $(-2, -\frac{1}{4})$
(ii)	$Vol = \pi \left(\frac{1}{4}\right)^{2} (2) - \pi \int_{0}^{2} \left(\frac{x}{4 + x^{2}}\right)^{2} dx$
	$= \frac{\pi}{8} - \pi \int_0^2 \frac{x^2}{\left(4 + x^2\right)^2} \mathrm{d}x$
	$= \frac{\pi}{8} - \pi \int_0^2 \frac{x^2}{(4+x^2)^2} \mathrm{d}x$
	$= \frac{\pi}{8} - \pi \int_0^{\frac{\pi}{4}} \frac{4 \tan^2 \theta}{\left(4 + 4 \tan^2 \theta^2\right)^2} \left(2 \sec^2 \theta\right) d\theta$
	$= \frac{\pi}{8} - \pi \int_0^{\frac{\pi}{4}} \frac{4 \tan^2 \theta}{16 \sec^4 \theta} \left(2 \sec^2 \theta \right) d\theta$
	$= \frac{\pi}{8} - \pi \int_0^{\frac{\pi}{4}} \frac{\tan^2 \theta}{2\sec^2 \theta} d\theta$
	$= \frac{\pi}{8} - \frac{\pi}{2} \int_0^{\frac{\pi}{4}} \sin^2 \theta d\theta$
	$= \frac{\pi}{8} - \frac{\pi}{4} \int_0^{\frac{\pi}{4}} 1 - \cos 2\theta d\theta$
	$=\frac{\pi}{8}-\frac{\pi}{4}\left[\theta-\frac{\sin 2\theta}{2}\right]_{0}^{\frac{\pi}{4}}$
	$=\frac{\pi}{8}-\frac{\pi}{4}\left[\left(\frac{\pi}{4}-\frac{1}{2}\right)-0\right]$
	$=\frac{\pi}{4}-\frac{\pi^2}{16}$

Qn	Solution				
4	Maclaurin Series				
	$\frac{A}{\frac{\pi}{4} + 2x}$				
	$\angle ACB = \pi - \frac{\pi}{4} - \left(\frac{\pi}{4} + 2x\right) = \frac{\pi}{4} - 2x$				
	Using Sine Rule, $\frac{AB}{AC} = \frac{AC}{AC}$				
	$\frac{\pi b}{\sin\left(\frac{\pi}{2} - 2x\right)} = \frac{\pi c}{\sin\left(\frac{\pi}{4} + 2x\right)}$				
	$\frac{AB}{AC} = \frac{\sin\left(\frac{\pi}{2} - 2x\right)}{\sin\left(\frac{\pi}{4} + 2x\right)}$				
	$=\frac{\cos 2x}{\cos 2x}$				
	$\sin\frac{\pi}{4}\cos 2x + \cos\frac{\pi}{4}\sin 2x$				
	$=\frac{\cos 2x}{\frac{1}{\sqrt{2}}(\cos 2x + \sin 2x)}$				
	$\frac{AB}{AC} = \frac{\sqrt{2}\cos 2x}{\cos 2x + \sin 2x} \text{ (shown)}$				
	$AB = \sqrt{2}\cos 2x$				
	$\frac{1}{AC} = \frac{1}{\cos 2x + \sin 2x}$				
	$ \begin{array}{c} \sqrt{2}\left(1-\frac{(2x)^2}{2!}\right) \\ \approx -\frac{(2x)^2}{2!} \end{array} $				
	$\approx \frac{\sqrt{2}\left(1 - \frac{\left(2x\right)^2}{2!}\right)}{\left(1 - \frac{\left(2x\right)^2}{2!}\right) + \left(2x\right)}$				
	$=\frac{\sqrt{2}\left(1-2x^2\right)}{1+2x-2x^2}$				
	$= \sqrt{2} \left(1 - 2x^2 \right) \left(1 + 2x - 2x^2 \right)^{-1}$				
	$= \sqrt{2} \left(1 - 2x^2\right) \left(1 + \left(-1\right) \left(2x - 2x^2\right) + \frac{\left(-1\right) \left(-2\right)}{2!} \left(2x - 2x^2\right)^2 + \dots\right)$				
	$= \sqrt{2} (1 - 2x^2) (1 - 2x + 2x^2 + 4x^2 + \dots)$ = $\sqrt{2} (1 - 2x^2) (1 - 2x + 6x^2 + \dots)$				
	$= \sqrt{2} (1 - 2x) (1 - 2x + 6x^2 +)$ $= \sqrt{2} (1 - 2x + 6x^2 - 2x^2 +)$				
	$= \sqrt{2} \left(1 - 2x + 4x^2 + \dots \right)$				
<u> </u>	<u>'</u>				

Qn	Solution
5	Vectors
	C
(i)	$\overrightarrow{OC} = \frac{2\overrightarrow{OA} + 3\overrightarrow{OB}}{5} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$ $\overrightarrow{OR} = \overrightarrow{OD} + \overrightarrow{OR} = 2\overrightarrow{OA} + \overrightarrow{OR} = 2\mathbf{a} + \mathbf{b}$
	$\overrightarrow{OP} = \overrightarrow{OD} + \overrightarrow{OB} = 2\overrightarrow{OA} + \overrightarrow{OB} = 2\mathbf{a} + \mathbf{b}$ Area of triange $OPC = \frac{1}{2} \overrightarrow{OP} \times \overrightarrow{OC} $ $= \frac{1}{2} (2\mathbf{a} + \mathbf{b}) \times (\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}) $ $= \frac{1}{10} 2\mathbf{a} \times 2\mathbf{a} + 2\mathbf{a} \times 3\mathbf{b} + \mathbf{b} \times 2\mathbf{a} + \mathbf{b} \times 3\mathbf{b} $ $= \frac{1}{10} 6\mathbf{a} \times \mathbf{b} - 2\mathbf{a} \times \mathbf{b} $ $= \frac{2}{5} \mathbf{a} \times \mathbf{b} $ $\therefore k = \frac{2}{5}$
(ii)	Line AB : $\mathbf{r} = \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a}), \ \lambda \in \mathbb{R}$ Line OP : $\mathbf{r} = \mu (2\mathbf{a} + \mathbf{b}), \ \mu \in \mathbb{R}$ To find intersection point:
	$\mathbf{a} + \lambda (\mathbf{b} - \mathbf{a}) = \mu (2\mathbf{a} + \mathbf{b})$ $(1 - \lambda)\mathbf{a} + \lambda \mathbf{b} = 2\mu \mathbf{a} + \mu \mathbf{b}$
	Since, a is not parallel to b and they are nonzero vectors, $1-\lambda=2\mu$ $\lambda=\mu$ Solving, $\lambda=\mu=\frac{1}{3}$
	$\overrightarrow{OE} = \frac{1}{3}(2\mathbf{a} + \mathbf{b})$

(iii) Method 1:

Since E is the foot of perpendicular from D to the line OP,

$$\overrightarrow{DE} \cdot \overrightarrow{OP} = 0$$

$$\left(\frac{1}{3}(2\mathbf{a} + \mathbf{b}) - 2\mathbf{a}\right) \cdot (2\mathbf{a} + \mathbf{b}) = 0$$

$$\frac{1}{3}(\mathbf{b} - 4\mathbf{a}) \cdot (2\mathbf{a} + \mathbf{b}) = 0$$

$$\mathbf{b} \cdot 2\mathbf{a} + \mathbf{b} \cdot \mathbf{b} - 4\mathbf{a} \cdot 2\mathbf{a} - 4\mathbf{a} \cdot \mathbf{b} = 0$$

$$\left|\mathbf{b}\right|^2 - 8\left|\mathbf{a}\right|^2 - 2\mathbf{a} \cdot \mathbf{b} = 0$$

$$2\mathbf{a} \cdot \mathbf{b} = \left| \mathbf{b} \right|^2 - 8 \left| \mathbf{a} \right|^2$$

$$2|\mathbf{a}||\mathbf{b}|\cos A\hat{O}B = |\mathbf{b}|^2 - 8|\mathbf{a}|^2$$

$$\cos A\hat{O}B = \frac{\left|\mathbf{b}\right|^2 - 8\left|\mathbf{a}\right|^2}{2\left|\mathbf{a}\right|\left|\mathbf{b}\right|}$$

$$= \frac{\left|\mathbf{b}\right|^2 - 8}{2\left|\mathbf{b}\right|} \qquad (\because \mathbf{a} \text{ is a unit vector})$$

Since \hat{AOB} is acute,

$$\frac{\left|\mathbf{b}\right|^2 - 8}{2\left|\mathbf{b}\right|} > 0$$

and since $|\mathbf{b}| > 0$,

$$|{\bf b}| > 2\sqrt{2}$$

Also,

$$\frac{\left|\mathbf{b}\right|^{2}-8}{2\left|\mathbf{b}\right|}<1 \qquad (\because \mathbf{a} \text{ is not parallel to } \mathbf{b})$$

$$\left|\mathbf{b}\right|^2 - 8 < 2\left|\mathbf{b}\right| \quad \left(\because \left|\mathbf{b}\right| > 0\right)$$

$$|\mathbf{b}|^2 - 2|\mathbf{b}| - 8 < 0$$

$$(|\mathbf{b}|-4)(|\mathbf{b}|+2)<0$$

we get
$$0 < |\mathbf{b}| < 4$$
.

Thus,
$$2\sqrt{2} < |\mathbf{b}| < 4$$

Method 2:

Since E is the foot of perpendicular from D to the line OP,

$$\overrightarrow{DE} \cdot \overrightarrow{OP} = 0$$

$$\left(\frac{1}{3}(2\mathbf{a}+\mathbf{b})-2\mathbf{a}\right)\cdot(2\mathbf{a}+\mathbf{b})=0$$

$$\frac{1}{3}(\mathbf{b} - 4\mathbf{a}) \cdot (2\mathbf{a} + \mathbf{b}) = 0$$

$$\mathbf{b} \cdot 2\mathbf{a} + \mathbf{b} \cdot \mathbf{b} - 4\mathbf{a} \cdot 2\mathbf{a} - 4\mathbf{a} \cdot \mathbf{b} = 0$$

$$\left|\mathbf{b}\right|^2 - 8\left|\mathbf{a}\right|^2 - 2\mathbf{a} \cdot \mathbf{b} = 0$$

$$2\mathbf{a} \cdot \mathbf{b} = |\mathbf{b}|^2 - 8|\mathbf{a}|^2$$

$$2|\mathbf{a}||\mathbf{b}|\cos A\hat{O}B = |\mathbf{b}|^2 - 8|\mathbf{a}|^2$$

$$|\mathbf{b}|^2 - 2|\mathbf{b}|\cos A\hat{O}B - 8 = 0$$
 (: a is a unit vector)

$$|\mathbf{b}| = \frac{2\cos A\hat{O}B \pm \sqrt{4\cos^2 A\hat{O}B - 4(1)(-8)}}{2}$$

$$=\cos A\hat{O}B \pm \sqrt{\cos^2 A\hat{O}B + 8}$$

$$=\cos A\hat{O}B + \sqrt{\cos^2 A\hat{O}B + 8}$$
 or $\cos A\hat{O}B - \sqrt{\cos^2 A\hat{O}B + 8}$

Since
$$|\mathbf{b}| > 0$$
, $|\mathbf{b}| = \cos A\hat{O}B + \sqrt{\cos^2 A\hat{O}B + 8}$

Since \hat{AOB} is acute,

 $0 < \cos A \hat{O} B < 1$

$$0 < \cos^2 A\hat{O}B < 1$$

And $\cos A\hat{O}B$ is strictly decreasing for the given domain,

We have $2\sqrt{2} < |{\bf b}| < 4$

Qn				Solut	tion			
6	Discrete Random Variable							
(i)	Probability D	Distribut	ion of 2	X	1		T	T
	X	0	1	2	3	4	5	6
	P(X=x)	p	q	$\frac{q}{3}$	q	$\frac{q}{3}$	q	$\frac{q}{3}$
	E(X) = 2							
	$0+q+\frac{2q}{3}+3$	$3q + \frac{4q}{3}$	+5q+	$\frac{6q}{3} = 2$				
	$p+q+\frac{q}{3}+q$	$y + \frac{q}{3} + q$	$+\frac{q}{3}=$	1				
	Solving, $p =$	$\frac{5}{13}$, $q =$	$\frac{2}{13}$					
	Probability D	Distribut	ion of 2	X				
	X	0	1	2	3	4	5	6
	P(X=x)	$\frac{5}{13}$	$\frac{2}{13}$	$\frac{2}{39}$	$\frac{2}{13}$	$\frac{4}{\frac{2}{39}}$	$\frac{5}{2}$	$\frac{2}{39}$
(44)								
(ii)	$P(X_1 + X_2)$	=4)=	$P(X_1)$	$=0,X_2$	$_{2}=4)+$	$-P(X_1 =$	$4, X_2 =$	=0
		-	+P(X	$X_1 = 1, X_2$	(2, =3)	$+P(X_1 =$	$=3, X_{2}$	=1)
		4	- P(<i>X</i>	$x_{1} = 2, X$	$\zeta_2 = 2$, 1	-	,
		'	- (-1	_, _, _,	- 2 - <i>-)</i>			
		$=\frac{5}{13}$	$\left(\frac{2}{39}\right)$	$\times 2 + \frac{2}{13}$	$\left(\frac{2}{13}\right) \times 2$	$2 + \frac{2}{39} \left(\frac{2}{39} \right)$	$\left(\frac{2}{9}\right)$	

 $= \frac{136}{1521} \text{ or } 0.0894 \text{ (3 s.f.)}$

Qn	Solution
7	Permutations & Combinations and Probability
(a)(i)	Number of teams = ${}^{10}C_5 = 252$
(a)(ii)	Number of teams = ${}^{6}C_{4} + ({}^{3}C_{1})({}^{6}C_{3}) = 75$
(b)(i)	Method 1:
	$A \longrightarrow B$
	1 1 1 17 1
	$\left(\begin{array}{c} \frac{1}{10} \left(x \right) \frac{17}{30} - x \right) \frac{1}{3} \end{array}$
	Let $P(A \cap B) = x$
	$P(B \mid A) = \frac{4}{5}$
	$\frac{\lambda}{1} = \frac{4}{5}$
	$\frac{x}{\frac{1}{10} + x} = \frac{4}{5}$
	_
	$x = \frac{2}{5}$
	Method 2:
	$P(A \cup B) = 1 - P(A' \cap B') = \frac{2}{3}$
	$P(B A) = \frac{4}{5} = \frac{P(A \cap B)}{P(A)} \Rightarrow P(A \cap B) = \frac{4}{5}P(A)$
	$P(B A) = \frac{1}{5} = \frac{1}{P(A)} \Rightarrow P(A \cap B) = \frac{1}{5}P(A)$
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$= P(A) + \frac{17}{30} - \frac{4}{5}P(A)$
	$=\frac{1}{5}P(A)+\frac{17}{30}$
	$\frac{1}{2}$
	$\Rightarrow P(A) = \frac{1}{2}$ $\Rightarrow P(A \cap B) = \frac{2}{5}$

$$P(A | B') = \frac{P(A \cap B')}{P(B')}$$
$$= \frac{P(A \cap B')}{1 - P(B)}$$
$$= \frac{\frac{1}{10}}{1 - \frac{17}{30}}$$
$$= \frac{3}{13}$$

Qn	Solution					
8	Correlation and Regression					
(i)	ρ					
	^ ↑					
	49 - *					
	×					
	x x					
	9 +. *					
	$\frac{1}{1}$ $\frac{1000}{d}$					
(ii)(a)	$r = -0.62016 \approx -0.620$					
(ii)(b)	r = -0.99371 = -0.994					
(iii)	Based on the scatter diagram, as d increases, ρ decreases at a decreasing					
	rate.					
	Also, $ r = -0.99371 = 0.994$ for $\ln \rho$ and $\ln d$ is closer to 1 as compared to					
	$ r = -0.62016 = 0.620$ for ρ and d .					
	Hence, the relationship between ρ and d is better modelled by					
	$\ln \rho = A + B \ln d .$					
	$\ln \rho = 3.8793 - 0.25338 \ln d \approx 3.88 - 0.253 \ln d,$					
	where $A = 3.88, B = -0.253$					
(iv)	$\ln \rho = 3.8793 - 0.25338 \ln d$					
	When $\rho = 8$,					
	$\ln 8 = 3.8793 - 0.25338 \ln d$					
	$d = 1216.1 \approx 1216 \text{ mm}$ (to nearest integer)					
	Even though $ r = 0.994$ is close to 1, since $\rho = 8$ lies outside the data range					
	of $ ho$, the linear relation may no longer hold, hence the estimate is not					
	reliable.					
(v)	The product moment correlation coefficient will be the same , as r is					
	independent of the scale of measurement.					

0								
Qn	Solution Unpathosis Testing							
(i)	Hypothesis Testing Since the weights of apples should be close to the mean of 200g, using $\sum (x-200)^2$ instead of $\sum x^2$ ensures the sum is manageable and not too large .							
	OR							
	By coding the summarised data of $(x-200)$ with reference to the mean of 200, it reduces the value of summarized data into a number that can be more easily handled when finding unbiased estimates.							
(ii)								
	An unbiased estimate for the population mean is $\bar{x} = \frac{-30}{30} + 200 = 199$							
	An unbiased estimate for the population variance is $(20)^2$							
	$s^{2} = \frac{1}{29} \left(1800 - \frac{\left(-30 \right)^{2}}{30} \right) = \frac{1770}{29}$							
(iii)	Let μ be the population mean weight of apples, in g.							
	$H_0: \mu = 200$							
	$H_1: \mu < 200$							
	Under \mathbf{H}_0 , Since $n = 30$ is large, by Central Limit Theorem,							
	$\overline{X} \sim N\left(200, \frac{1770}{(29)(30)}\right)$ approximately.							
	Test Statistic: $Z = \frac{\overline{X} - 200}{\sqrt{\frac{1770}{(29)(30)}}}$							
	Level of significance: 10%							
	Reject H_0 if p -value < 0.1 .							
	Under H_0 , using GC, p -value = 0.24162 (5 s.f) = 0.242 (3 s.f)							
	Since p -value = 0.242 > 0.1, we do not reject \mathbf{H}_0 and conclude that there is insufficient evidence, at 10% level of significance, that the population mean weight of apples sold by the fruit seller is less than 200g. Thus the fruit's claim is valid.							

(iv) Let Y be the weight of a randomly chosen orange, in g. Let
$$\mu_y$$
 be the population mean weight of oranges, in g.

$$H_0: \mu_y = 120$$

 $H_1: \mu_y \neq 120$

Under
$$H_0$$
, $Y \sim N(120,8^2)$ \Rightarrow $\overline{Y} \sim N(120,\frac{8^2}{30})$

Test Statistic:
$$Z = \frac{\overline{Y} - 120}{8\sqrt{30}}$$

Level of significance: 10%

Reject
$$H_0$$
 if z-value < -1.6449 or z-value > 1.6449

Since H_0 is rejected,

$$\frac{\overline{y}-120}{8/\sqrt{30}} < -1.6449$$
 or $\frac{\overline{y}-120}{8/\sqrt{30}} > 1.6449$
 $\overline{y} < 117.60$ or $\overline{y} > 122.40$
 $\overline{y} < 117$ or $\overline{y} > 123$

$$\{\overline{y} \in \mathbb{R}^+ : \overline{y} < 117 \text{ or } \overline{y} > 123\} \text{ or } \{\overline{y} \in \mathbb{R} : 0 < \overline{y} < 117 \text{ or } \overline{y} > 123\}$$

 (i) Binomial Distribution (i) The probability that a randomly chosen key chain is deconstant at 0.03 for all key chains in a box. Whether a randomly chosen key chain is defective is any other key chains in a box. (ii) Let X be the number of defective key chains out of the control of t	independent of
constant at 0.03 for all key chains in a box. Whether a randomly chosen key chain is defective is any other key chains in a box.	independent of
any other key chains in a box.	
(ii) Let Y be the number of defective key chains out of :	n key chains in a
box.	
$X \sim B(n, 0.03)$	
$P(X \le 2) < 0.95$	
when $n = 27$, $P(X \le 2) = 0.9538 > 0.95$	
when $n = 28$, $P(X \le 2) = 0.9494 < 0.95$	
Least value of $n = 28$	
(iii) Method A:	
Let Y be the number of defective key chains out of 2 box.	20 key chains in a
$Y \sim B(20, 0.03)$	
$P(Y \le 2) = 0.97899 = 0.979 $ (3 s.f.)	
Method B:	
Let W be the number of defective key chains out of 1	0 key chains in a
box.	
$W \sim B(10, 0.03)$ P(a batch is accepted)	
$= P(W = 0) + P(W = 1)P(W \le 1)$	
= 0.95762	
= 0.958 (3 s.f.)	
(iv)	
Expected number for Method A = 20 Expected number for Method B	
$= 10 \times (1 - P(W = 1)) + 20 \times P(W = 1)$	
=12.3 (3 s.f.)	
Since the expected number of keychains to be sample lower, the company might choose B instead of A achecking (or any other valid reason).	
(v) $P(Y \ge 3) = 1 - P(Y \le 2) = 1 - 0.97899 = 0.02101$	
Let S be the number of boxes with 3 or more defection of 30 boxes.	ive key chains out
$S \sim B(30, 0.02101)$	
Let T be the number of boxes with 3 or more defection of 14 boxes.	ive key chains out
$T \sim B(14, 0.02101)$	
Required probability = $\frac{P(T=2) \times 0.02101 \times (0.97899)}{P(S=3)}$	$\frac{(0)^{15}}{(0)^{15}} = 0.0224$

Qn	Solution
11	Normal and Sampling Distribution

(i)	Let <i>X</i> and <i>Y</i> be the volume of oil in a randomly chosen barrel of light
	and heavy oil respectively.

$$X \sim N(110, 2.5^2)$$
 $Y \sim N(145, 3.5^2)$

$$P(104 < X < 116) = 0.984$$

=
$$P(142 < Y < 150)^4 \times P(Y > 150) \times P(Y < 142)^2 \times \frac{7!}{4!2!}$$

= 0.0863

(iv) Let
$$\overline{Y} = \frac{Y_1 + Y_2 + ... + Y_n}{n}$$
 and $\overline{Y} \sim N\left(145, \frac{3.5^2}{n}\right)$

$$P(\overline{Y} > k) \ge 0.3$$

$$P\left(Z > \frac{k - 145}{\frac{3.5}{\sqrt{n}}}\right) \ge 0.3$$

$$\frac{\sqrt{n}}{\sqrt{n}}$$

$$\frac{k-145}{3.5} \le 0.52440$$

$$k \le 145 + \frac{1.84}{\sqrt{n}}$$

(v) Let
$$T = 0.83(X_1 + X_2 + \dots + X_{25}) + 0.94(Y_1 + Y_2 + \dots + Y_{30})$$

$$E(T) = 0.83(110 \times 25) + 0.94(145 \times 30) = 6371.5$$
 (exact)

$$Var(T) = 0.83^2 (2.5^2 \times 25) + 0.94^2 (3.5^2 \times 30) = 432.363625$$
 (exact)

$$T \sim N(6371.5, 432.363625)$$
 (exact)

$$P(T+25(5)+30(8)>6800)$$

$$= P(T > 6435)$$

$$=0.00113$$

(vi) The distributions of the volume of all types of oil are independent of one another.