Qn	Suggested Solutions
1	$y = -\left(x - \frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2 - 4$
	$=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}$
	1. Translate $\frac{3}{2}$ units in the positive x direction.
	2. Reflect about the x axis
	3. Translate $\frac{7}{4}$ units in the negative y direction
	1. Translate $\frac{3}{2}$ units in the positive x direction.
	2. Translate $\frac{7}{4}$ units in the positive y direction
	3. Reflect about the x axis
2(i)	<i>y</i>
	(0,1)
	$\frac{1}{\sqrt{2}}$
	$\frac{1}{2}$
	y = 0 → x
(44)	
(ii)	$\int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} x \mathrm{d}y$ $\frac{\mathrm{d}y}{2} = -\sin t$
	$\begin{vmatrix} \frac{1}{2} & \frac{dy}{dt} \\ = \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \sin t \tan t (-\sin t) dt \end{vmatrix} \frac{dy}{dt} = -\sin t$
	$\begin{bmatrix} 1 & \pi & \end{bmatrix}$
	$\mathbf{J}\frac{\pi}{2}$
	$= \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} (\cos^2 t - 1) \tan t dt$ when $y = \frac{1}{\sqrt{2}}, t = \frac{\pi}{4}$
	3

$$\begin{aligned} & \mathbf{Qn} & \mathbf{Suggested Solutions} \\ & = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \sin t \cos t - \tan t \, dt \, \left(= \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sin 2t}{2} - \tan t \, dt \right) \\ & = \left[\frac{\sin^2 t}{2} + \ln(\cos t) \right]_{\frac{\pi}{3}}^{\frac{\pi}{3}} \, \text{or} \, \left[-\frac{1}{4} \cos 2t + \ln(\cos t) \right]_{\frac{\pi}{3}}^{\frac{\pi}{3}} \\ & = \left[\frac{1}{4} + \ln \left(\frac{1}{\sqrt{2}} \right) - \frac{3}{8} - \ln \left(\frac{1}{2} \right) \right] \\ & = \ln \sqrt{2} - \frac{1}{8} \, \text{units}^2 \\ \\ & \mathbf{3(i)} & \mathbf{Method 1} \\ & z = 2(\cos \beta + i \sin \beta) = 2e^{i\beta} \\ & \frac{z}{4 - z^2} = \frac{2e^{i\beta}}{4 - 4e^{i\beta\beta}} \\ & = \frac{e^{i\beta}}{2e^{i\beta} (e^{-i\beta} - e^{i\beta})} \\ & = -\frac{1}{2(2\sin \beta)i} \, \left(\because e^{i\beta} - e^{-i\beta} = 2 \, \text{Im} (e^{i\beta})i \right) \\ & = \left(\frac{1}{4} \csc \beta \right)i \quad \text{where } k = \frac{1}{4} \\ & \therefore k = \frac{1}{4} \end{aligned}$$

$$& \mathbf{Method 2} \\ & \frac{z}{4 - z^2} = \frac{2\cos \beta + i(2\sin \beta)}{4 - 4(\cos^2 \beta - i(8\sin \beta \cos \beta) + 4\sin^2 \beta} \\ & = \frac{2\cos \beta + i(2\sin \beta)}{4 - 4(1 - \sin^2 \beta) - i(8\sin \beta \cos \beta) + 4\sin^2 \beta} \\ & = \frac{2\cos \beta + i(2\sin \beta)}{8\sin^2 \beta - i(8\sin \beta \cos \beta)} \\ & = \frac{i(2\sin \beta - 2\cos \beta i)}{4\sin \beta (2\sin \beta - 2\cos \beta i)} \\ & = \frac{i(2\sin \beta - 2\cos \beta i)}{4\sin \beta (2\sin \beta - 2\cos \beta i)} \\ & = \left(\frac{1}{4} \csc \beta \right)i \quad \text{where } k = \frac{1}{4} \end{aligned}$$

Suggested Solutions
$arg(w) = arg(-\sqrt{3} + i) = \frac{5\pi}{6}$
$\Rightarrow \arg\left(w^*\right) = -\frac{5\pi}{6}$
$\arg\left(\frac{z}{4-z^2}\right) = \arg\left[\left(\frac{1}{4}\csc\beta\right)i\right] = \frac{\pi}{2}, \text{ since for } 0 < \beta < \frac{\pi}{2}, \frac{1}{4}\csc\beta > 0.$
$\arg\left(\left(\frac{z}{4-z^2}\right)\left(w^*\right)^n\right) = \arg\left(\frac{z}{4-z^2}\right) + \arg\left(\left(w^*\right)^n\right)$
$=\arg\left(\frac{z}{4-z^2}\right)+n\arg\left(w^*\right)$
$=\frac{\pi}{2}+n\left(-\frac{5\pi}{6}\right)$
$=\frac{\pi}{2}-\frac{5n\pi}{6}$
For $\left(\frac{z}{4-z^2}\right)\left(w^*\right)^n$ to be a real number, $\arg\left(\left(\frac{z}{4-z^2}\right)\left(w^*\right)^n\right) = k\pi$, where k is an integer.
Therefore
$\frac{\pi}{2} - \frac{5n\pi}{6} = k\pi$
$\Rightarrow n = \frac{3-6k}{3}$
Hence using GC, the three smallest positive integers are
n = 3 (when k = -2),
n = 9 (when $k = -7$), and $n = 15$ (when $k = -12$).
Method 2:
$\arg\left(w^*\right)^n = n\arg\left(w^*\right)$ $\left(5\pi\right)$

$$\arg\left(w^*\right)^n = n\arg\left(w^*\right)$$

$$= n\left(-\frac{5\pi}{6}\right)$$

 $= n \left(-\frac{5\pi}{6} \right)$ For $\left(\frac{z}{4-z^2} \right) \left(w^* \right)^n$ to be a real number, $\arg \left(w^* \right)^n = \frac{\pi}{2} + k\pi$, where k is an integer.

Qn	Suggested Solutions
	$-\frac{5n\pi}{6} = \frac{\pi}{2} + k\pi$
	· -
	$n = -\frac{3}{5} - \frac{6k}{5}$
	using GC, the three smallest positive integers are
	n = 3 (when $k = -3$),
	n = 9 (when $k = -8$),
4(a)	and $n = 15$ (when $k = -13$).
4(a) (i)	$\sum_{r=1}^{k} \left[\left(-\frac{1}{2} \right)^{r+1} + \ln \left(r+1 \right) \right]$
	$= \sum_{r=1}^{k} \left(-\frac{1}{2} \right)^{r+1} + \sum_{r=1}^{k} \ln (r+1)$
	$= \sum_{r=1}^{k} \left[\left(-\frac{1}{2} \right)^{r+1} \right] + \ln 2 + \ln 3 + \ln 4 + \dots + \ln (k+1)$
	$= \left(\frac{1}{4}\right) \left[\frac{1 - \left(-\frac{1}{2}\right)^k}{1 - \left(-\frac{1}{2}\right)}\right] + \ln\left[\left(k+1\right)!\right]$
	$=\frac{1}{6}\left[1-\left(-\frac{1}{2}\right)^{k}\right]+\ln\left[\left(k+1\right)!\right]$
4	As $k \to \infty$,
(a) (ii)	$\lim_{k \to \infty} \left\{ \frac{1}{6} \left[1 - \left(-\frac{1}{2} \right)^k \right] \right\} = \frac{1}{6}$
	$\lim_{k \to \infty} \left\{ \ln \left[(k+1)! \right] \right\} = \infty$
	Therefore, the sum to infinity of the series does not exist.
(b)	Let <i>a</i> be the first term of AP and <i>d</i> be the common difference.
	$S_6 = 4.5$
	$\Rightarrow \frac{6}{2}(2a+5d) = 4.5$
	$\Rightarrow 2a + 5d = 1.5$

Qn	Suggested Solutions
	$u_1 u_2 u_3 u_4 = 0$
	$\Rightarrow a(a+d)(a+2d)(a+3d) = 0$
	$\therefore d = -a \text{or} -\frac{a}{2} \text{or} -\frac{a}{3}$
	When $d = -a$, $\Rightarrow 2a + 5(-a) = 1.5$ $\Rightarrow a = -\frac{1}{2}$ (rej. : $a > 0$)
	When $d = -\frac{a}{2}$,
	$\Rightarrow 2a + 5\left(\frac{-a}{2}\right) = 1.5$ $\Rightarrow a = -3 \text{ (rej. } \because a > 0)$
	When $d = -\frac{a}{3}$,
	$\Rightarrow 2a + 5\left(\frac{-a}{3}\right) = 1.5$ $\Rightarrow a = 4.5$
	$T_{13} = 4.5 + 12(-1.5) = -13.5$
5(i)	s = 12
5(ii)	Given l_{DM} is parallel to $\begin{pmatrix} 1\\1\\t \end{pmatrix}$
	Plane $ABFE: 6x - z = 36 \Rightarrow r \cdot \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix} = 36$
	If <i>DM</i> doesn't intersect with <i>ABFE</i> , then <i>DM</i> must be parallel to <i>ABFE</i> , i.e. perpendicular to the normal vector of <i>ABFE</i> . $\begin{pmatrix} 1 \\ 1 \\ t \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix} = 0 \Rightarrow 6 - t = 0$
(iii)	$\therefore t = 6$
(111)	From part (i), $t = 6$,

Qn	Suggested Solutions
	\overrightarrow{DM} is parallel to $\begin{pmatrix} 1\\1\\6 \end{pmatrix}$
	$\overrightarrow{DG} / / \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
	Normal $=$ $\begin{pmatrix} 1\\1\\6 \end{pmatrix} \times \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} -6\\0\\1 \end{pmatrix} = -\begin{pmatrix} 6\\0\\-1 \end{pmatrix}$
	Equation of plane: $r \cdot \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 12 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix} = -24 \text{ (shown)}$
()	$\therefore k = -24$
(iv)	Normal vector of plane $DGM = \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}$
	Normal vector of plane $DEFG = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
	Angle between the 2 planes <i>DGM</i> and <i>DENM</i> = $\cos^{-1} \left \frac{\begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\sqrt{37}} \right $
	$=80.53768^{\circ} = 80.5^{\circ} \text{ (1 d.p.)}$
(v)	$\overrightarrow{OM} = \begin{pmatrix} -2 + \lambda \\ \lambda \\ 12 + 6\lambda \end{pmatrix}$
	Since height of the structure is 26 units,
	$12 + 6\lambda = 24$
	$\lambda = 2$
	$\overrightarrow{OM} = \begin{pmatrix} 0 \\ 2 \\ 24 \end{pmatrix}$

Qn	Suggested Solutions
	Coordinates of $M(0, 2, 24)$
	$\overrightarrow{AM} = \begin{pmatrix} 0 \\ 2 \\ 24 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -6 \\ 2 \\ 24 \end{pmatrix}$
	Shortest distance
	$= \frac{\left \overrightarrow{AM} \cdot \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix} \right }{\sqrt{37}}$
	$= \frac{\begin{vmatrix} -6 \\ 2 \\ 24 \end{vmatrix} - \begin{vmatrix} 6 \\ 0 \\ -1 \end{vmatrix}}{\sqrt{37}} = \frac{ -36 - 24 }{\sqrt{37}} = \frac{60}{\sqrt{37}}$
	Alternative Method
	Note that plane AGM parallel to plane ABFE
	plane AGM : $r \cdot \frac{\begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}}{\sqrt{37}} = \frac{-26}{\sqrt{37}}$
	plane $ABFE : r \cdot \frac{\begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}}{\sqrt{37}} = \frac{36}{\sqrt{37}}$
	Distance between the 2 planes = $\frac{36 - (-24)}{\sqrt{37}} = \frac{60}{\sqrt{37}}$ units
	Distance between the 2 planes = $\frac{1}{\sqrt{37}} = \frac{1}{\sqrt{37}}$ units
(vi)	$\prod : x = c \Rightarrow \underbrace{r} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = c \text{ which is a } y - z \text{ plane}$
	D(-2, 0, 12)
	Since $DE = 10$ units
	D(8, 0, 12)
	Since they intersect at E , $x = c = 8$
6(a)	Let T and S denote the event that a triangle and square block is chosen respectively. Let C denote the event that a block is correctly placed into the shaper sorter toy.
6(a)	Let T and S denote the event that a triangle and square block is chosen respectively.

Qn	Suggested Solutions
	Method 1
	P(C) = 0.9
	$P(S \mid C) = 0.4 \Rightarrow P(T \mid C) = 0.6$
	$\Rightarrow \frac{P(T \cap C)}{P(C)} = 0.6$
	$\Rightarrow P(T \cap C) = (0.6)(0.9) = 0.54$
	Required probability = $1 - 0.54 = 0.46$
	$\frac{\text{Method 2}}{P(C) = 0.9}$ $\Rightarrow P(C') = 0.1$
	$P(S \mid C) = 0.4$
	$\Rightarrow \frac{P(S \cap C)}{P(C)} = 0.4$
	$\Rightarrow P(S \cap C) = (0.4)(0.9) = 0.36$
	Required probability = $P(C') + P(S \cap C)$
	=0.1+0.36=0.46
(b)	P(S=2) = 2P(S=4)
	$\frac{{r+1 \choose 2}^{5} C_{3}}{{r+6 \choose 5}} = 2 \left(\frac{{r+1 \choose 4}^{5} C_{1}}{{r+6 \choose 5}} \right)$
	$\frac{(r+1)!(10)}{(r-1)!2!} = 2\frac{(r+1)!(5)}{(r-3)!4!}$
	$\frac{1}{2(r-1)!} = \frac{1}{(r-3)!4!}$
	12(r-3)!=(r-1)!
	12(r-3)! = (r-3)!(r-2)(r-1)
	$12 = (r-2)(r-1) \text{since } r \ge 3$
	$r^2 - 3r - 10 = 0$
	(r+2)(r-5) = 0
	r = -2 (rej) or $r = 5$
7(i)	It is not necessary for the fat content of the chocolate bars to be normally distributed . As the sample size (number of chocolate bars = 40) used is large, by Central Limit Theorem , the sample mean fat content of the chocolate bars is approximately normally distributed for the test to be valid.

Qn	Suggested Solutions
(ii)	$\overline{x} = \frac{1220}{40} = 30.5$
	$s^2 = \frac{1}{n-1} \sum \left(x - \overline{x} \right)^2$
	50
	$=\frac{50}{39}$
	≈1.28205
	≈1.28 (3 s.f.)
(iii)	Let <i>X</i> be the fat content in a chocolate bar in g.
	Let μ and σ be the population mean and variance of X .
	$H_0: \mu = 30$

$$H_0: \mu = 30$$

 $H_1: \mu > 30$

Test statistic,
$$Z = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim N(0,1)$$
 approximately.

For test to be rejected at 5% level of significance,

$$z = \frac{\bar{x} - \mu}{s / \sqrt{n}} \ge 1.64485$$

$$\frac{\bar{x} - 30}{\sqrt{(39)(40)}} \ge 1.64485$$

$$\bar{x} \ge 30.294475$$

$$\bar{x} \ge 30.3$$
 (3 s.f.)

Since
$$\overline{x} = \frac{1220}{40} = 30.5 \ge 30.2945$$
,

we reject H₀ at the 5% level of significance and conclude that the manager's suspicion is valid.

(iv) From part (iii), it was concluded that the manager's suspicion is valid, i.e. reject H_0 \Rightarrow Test statistic is in the critical region . \Rightarrow Test statistic ≥ 1.64486

Qn	Suggested Solutions
Q _{II}	Suggested Doldtions
	Now with a smaller population variance, the new test statistic will be larger.
	⇒ New Test statistic value >Old Test statistic value
	i.e $\frac{x-\mu}{\sqrt{2}} > \frac{x-\mu}{\sqrt{2}}$
	i.e $\frac{\overline{x} - \mu}{\sqrt{\frac{\sigma^2}{n}}} > \frac{\overline{x} - \mu}{\sqrt{\frac{s^2}{n}}}$
	H ₀ is still rejected at 5% level of significance.
	Thus the conclusion will be the same, i.e. conclude that the manager's suspicion is valid.
8 (a)	<u>Method 1</u>
	Total number of committees formed = $\binom{5}{2} \times \binom{10}{4} \times \binom{8}{4}$
	=147000
	Number of committees with the couple serve together $= \binom{5}{2} \times \binom{8}{2} \times \binom{8}{4}$
	= 19600
	Required number of committees formed = 147000 – 19600 = 127400
	Method 2
	Case 1: Wife is in and husband is out (5) (8) (8)
	No. of committees $= {5 \choose 2} \times {8 \choose 3} \times {8 \choose 4} = 39200$
	Case 2: Wife us out and husband is in
	No. of committees $= {5 \choose 2} \times {8 \choose 3} \times {8 \choose 4} = 39200$
	<u>Case 3</u> :
	The couple is out
	No. of committees $= {5 \choose 2} \times {8 \choose 4} \times {8 \choose 4} = 49000$
	Required number of committees formed
	= 39200 + 39200 + 49000 = 127400
(b)	
	LTPTPTPL
	Number of arrangements if no two parents are to stand next to each other $= 2 \times 4 \times 4 \times 3 \times 3$ =10368
(c)	No. of circular arrangements if all parents are together and teachers are separated

Qn Suggested Solutions	
Required probability = $\frac{3!4!4!}{10!} = \frac{1}{1050}$ = 9.52×10^{-4} (3 s.f.) 9(i) Let S be the score of Abel's game. P(S = 4) = $P(\{\text{Red}\}, \{\text{Non-red, black 2}\})$ = $\frac{2}{3x+1} + \frac{3x-1}{3x+1} \cdot \frac{1}{3}$ = $\frac{6+3x-1}{3(3x+1)}$ = $\frac{3x+5}{3(3x+1)}$	
$= 9.52 \times 10^{-4} \text{ (3 s.f.)}$ 9(i) Let S be the score of Abel's game. $P(S = 4)$ $= P(\{\text{Red}\}, \{\text{Non-red, black 2}\})$ $= \frac{2}{3x+1} + \frac{3x-1}{3x+1} \cdot \frac{1}{3}$ $= \frac{6+3x-1}{3(3x+1)}$ $= \frac{3x+5}{3(3x+1)}$ Pad. Score: 4	
$= 9.52 \times 10^{-4} \text{ (3 s.f.)}$ 9(i) Let S be the score of Abel's game. $P(S = 4)$ $= P(\{\text{Red}\}, \{\text{Non-red, black 2}\})$ $= \frac{2}{3x+1} + \frac{3x-1}{3x+1} \cdot \frac{1}{3}$ $= \frac{6+3x-1}{3(3x+1)}$ $= \frac{3x+5}{3(3x+1)}$ Pad. Score: 4	
9(i) Let S be the score of Abel's game. P(S = 4) $= P(\{Red\}, \{Non-red, black 2\})$ $= \frac{2}{3x+1} + \frac{3x-1}{3x+1} \cdot \frac{1}{3}$ $= \frac{6+3x-1}{3(3x+1)}$ $= \frac{3x+5}{3(3x+1)}$	
$P(S = 4)$ = $P(\{\text{Red}\}, \{\text{Non-red, black 2}\})$ = $\frac{2}{3x+1} + \frac{3x-1}{3x+1} \cdot \frac{1}{3}$ = $\frac{6+3x-1}{3(3x+1)}$ = $\frac{3x+5}{3(3x+1)}$	
$= P(\lbrace Red \rbrace, \lbrace Non-red, black 2 \rbrace)$ $= \frac{2}{3x+1} + \frac{3x-1}{3x+1} \cdot \frac{1}{3}$ $= \frac{6+3x-1}{3(3x+1)}$ $= \frac{3x+5}{3(3x+1)}$ Pad. Sorre: 4	
$= \frac{2}{3x+1} + \frac{3x-1}{3x+1} \cdot \frac{1}{3}$ $= \frac{6+3x-1}{3(3x+1)}$ $= \frac{3x+5}{3(3x+1)}$ Pad. Soors: 4	
$= \frac{6+3x-1}{3(3x+1)}$ $= \frac{3x+5}{3(3x+1)}$ Pad Socre: 4	
$= \frac{6+3x-1}{3(3x+1)}$ $= \frac{3x+5}{3(3x+1)}$ Pad Soro: 4	
$= \frac{3(3x+1)}{3(3x+1)}$ =\frac{3x+5}{3(3x+1)}	
$=\frac{3x+5}{3(3x+1)}$ Pad Sagra: 4	
Pad Soore: 4	
Pad Soore: 4	
Red Score: 4	
Red Score: 4	
$\frac{2}{2}$	
$\frac{2}{3x+1}$ Rea Score. 4	
$\frac{1}{3}$ 0 Score: 0	
$\frac{3x-1}{\sqrt{3}} \qquad 0 \qquad \text{Score. } 0$	
$\frac{1}{3}$	
1	
2 Score: 4	
(ii) Let S be Abel's score in a round.	
P(S=0)	
$= P(\{Non-red, Card zero\})$	
$=\frac{3x-1}{3x+1}\cdot\frac{1}{3}$	
$=\frac{3x-1}{3(3x+1)}$	
P(S=2)	
$= P(\{Non-red, Card 1\})$	

Qn	Suggested Solutions
-	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$P(S=s) \qquad \frac{3x-1}{3(3x+1)} \qquad \frac{3x-1}{3(3x+1)} \qquad \frac{3x+5}{3(3x+1)}$
(iii)	Mode = 4
(iv)	E(S)
	$= 0 \cdot P(S=0) + 2 \cdot P(S=2) + 4P(S=4)$
	$= 2\left(\frac{3x-1}{3(3x+1)}\right) + 4\left(\frac{3x+5}{3(3x+1)}\right)$
	$=\frac{6(x+1)}{(3x+1)}$
	$E(S^2)$
	$=0^{2} \cdot P(S=0) + 2^{2} \cdot P(S=2) + 4^{2} \cdot P(S=4)$
	$=2^{2}\left(\frac{3x-1}{3(3x+1)}\right)+4^{2}\left(\frac{3x+5}{3(3x+1)}\right)$
	$=\frac{12x-4+48x+80}{3(3x+1)}$
	$= \frac{60x + 76}{3(3x+1)}$
	$\therefore \operatorname{Var}(S) = \operatorname{E}(S^2) - \left[\operatorname{E}(S)\right]^2$
	$=\frac{60x+76}{3(3x+1)}-\frac{36(x+1)^2}{(3x+1)^2}$
(v)	x=3
	$E(S) = \frac{18(3) + 18}{3(10)} = 2.4$
	$Var(S) = E(S^2) - [E(S)]^2$
	$= \frac{60(3) + 76}{3(3(3) + 1)} - (2.4)^{2}$
	$=\frac{256}{3(10)}-\left(2.4\right)^2=\frac{208}{75}$
	n = 100 is large, by Cental Limit Theorem,

Qn Suggested Solutions $\overline{S} \sim N\left(2.4, \frac{208}{75(100)}\right) \text{ approximately.}$ $P(\overline{S} \ge 2.5) = 0.2740929 = 0.274 \text{ (3 s.f.)}$

10(a)

The regression line of y on x is the line which minimizes the sum of squares of the residuals in the vertical direction, d_i , i.e. $\sum d_i^2$, while the regression line of x on y is the line which minimizes the sum of squares of the residuals in the horizontal direction, e_i , i.e. $\sum e_i^2$

Qn	Suggested Solutions
(ii)	The scatter diagram shows a decreasing, concave upward trend. Hence model (II) is a better fit
	for the data.
	$t \uparrow t \uparrow$
	$\mathbf{(I)} \qquad \mathbf{(II)} \qquad \mathbf{(III)}$
	$t = ad + b$ $t = a\left(\frac{1}{d}\right) + b$ $t = ae^d + b$
	From GC,
	$t = 5767.446342 \left(\frac{1}{d}\right) - 37.61923382$
	$\therefore t = 5767.446 \left(\frac{1}{d}\right) - 37.619 \text{ (3 d.p.)}$
	r = 0.995 (3 d.p.)
	 (I) Decreasing, linear relationship (II) Non-linear, Decreasing and concave upwards trend (III) Non-linear, Decreasing and concave downwards trend
(***)	Since scatter diagram in (b)(i) shows a non-linear relationship between the 2 variables and the characteristics of the scatter plot shows that a decreasing and concave upwards curve like in Model (II) will best model the relationship for the 2 variables.
(iii)	When $d = 150$, $t = 5767.446342 \left(\frac{1}{150}\right) - 37.61923382$
	t = 0.830 (3 s.f.)
	The estimate is not reliable because $d = 150$ is outside the data range [50,100].
(iv)	$1 \text{ m} = 3.28 \text{ ft} \Rightarrow D \text{ m} = 3.28D \text{ ft} = d$
	$\therefore d = 3.28D$
	$t = 5767.446342 \left(\frac{1}{3.28D}\right) - 37.61923382$
	$t = \frac{1760}{D} - 37.6 $ (3 s.f.)
(v)	From GC, $\left(\frac{1}{d}, \overline{t}\right) = (0.0141, 43.7) (3 \text{ s.f.})$

Qn	Suggested Solutions
	$\frac{1}{d} = 0.0140939153$
	$\overline{d} = \frac{1}{0.0140939153}$
	d = 70.9526 = 71.0 (3 s.f.)
11	$X \sim N(\mu_1, 11.83^2), Y \sim N(\mu_2, 11.83^2)$
	Given that $P(X < 175) = P(Y > 150)$,
	$P\left(Z < \frac{175 - \mu_1}{11.83}\right) = P\left(Z > \frac{150 - \mu_2}{11.83}\right)$
	$175 - \mu_1 $ $150 - \mu_2$
	$\frac{175 - \mu_1}{11.83} = -\frac{150 - \mu_2}{11.83}$
	$175 - \mu_1 = -150 + \mu_2$
	$\therefore \mu_{1} + \mu_{2} = 175 + 150$
	= 325
	By symmetry,
	$\mu_1 = 175$ $150 = \mu_2$
	$175 - \mu_1 = \mu_2 - 150$
	$\therefore \mu_1 + \mu_2 = 175 + 150$
	= 325
(i)	$X_1 + X_2 - 2(Y + M) \sim N(2(180) - 2(180), 2(11.83^2) + 2^2(174.9953))$
	i.e. $X_1 + X_2 - 2(Y + M) \sim N(0, 979.879)$
	$P(0 < X_1 + X_2 - 2Y < 15) = 0.184 (3 \text{ s.f.})$
	(0.11, 1.12, 2.1.13) = 0.101 (3.3.1.)
	Assume that the volumes of each cup of black coffee and milk added from the vending machine are (i.e. X_1 , X_2 , Y and M) independent of one another.
(ii)	$X \sim N(180,11.83^2), Y \sim N(145,11.83^2), M \sim N(35,5.92^2)$
(11)	B = Cost Price of 1 cup of Black Coffee = 0.01X
	W = Cost Price of 1 cup of White Coffee = 0.01Y + 0.02M
	$B \sim N(1.8, 0.1399489),$
	$W = 0.01Y + 0.02M \sim N(2.15, 0.02801345)$
	Since <i>n</i> cups of black coffee are sold per day,
	(100-n) cups of white coffee are sold per day.

Qn	Suggested Solutions
	Let P_B be profit for black coffee, and P_W be profit for white coffee and T be the total profit
	per day.
	$P_{B} = 4n - (B_{1} + B_{2} + \dots + B_{n})$
	$E(P_B) = 2.2n$
	$Var(P_B) = 0.01^2 (11.83^2) n$
	=0.01399489n
	$E(P_W) = 5(100-n) - 2.15(100-n) = 285 - 2.85n$
	$Var(P_W) = (100 - n)0.02801345$
	$T \sim N(285 - 0.65n, 2.801345 - 0.01401856n)$
	$P(T>230)\geq 0.8$
	$n \mid P(T > 230)$
	81 0.9657
	82 0.907
	83 0.794
(:::)	Therefore, largest number of cups of black coffee sold per day is 82.
(iii)	Let <i>F</i> be the number of customers selecting regular black coffee receives the drink free of charge.
	$F \sim B\left(3, \frac{p}{100}\right)$
	$P(F=1) = 3\left(\frac{p}{100}\right)\left(1 - \frac{p}{100}\right)^{2}$
(iv)	$3\left(\frac{p}{100}\right)\left(1 - \frac{p}{100}\right)^2 \le 0.1$
	y †
	y = P(X = 1) $y = 0.1$ 3.58589 79.526968 p
	$0 \le p \le 3.58 \text{ or } 79.6 \le p \le 100 (3 \text{ s.f.})$