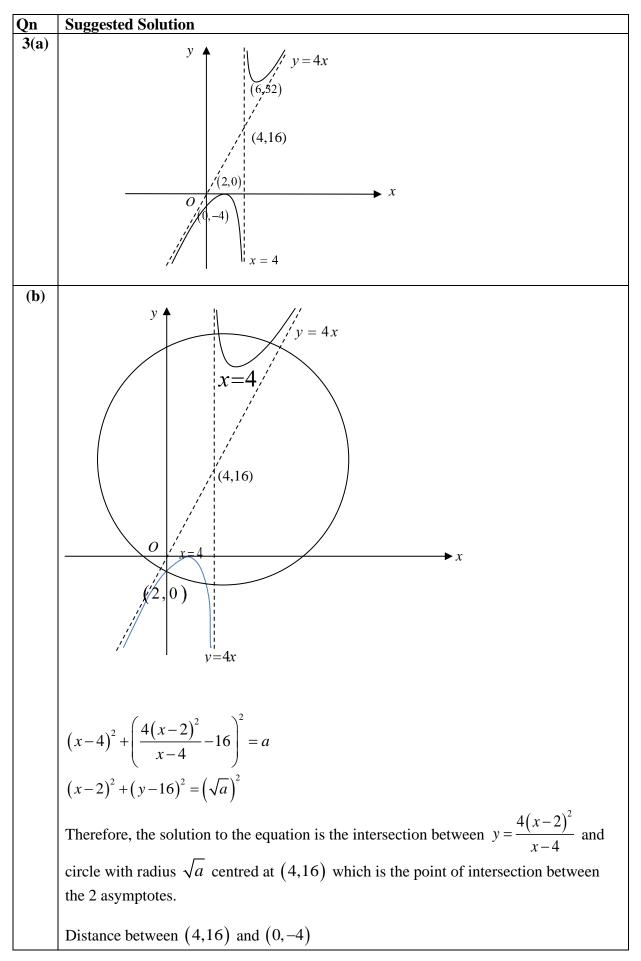

DHS 2022 Year 6 H2 Math Prelim Exam P2 solutions

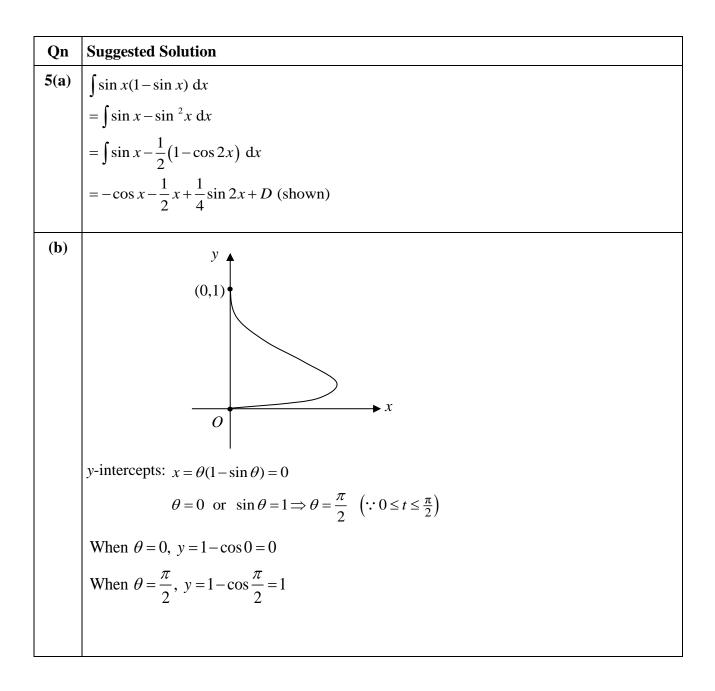

Section A: Pure Mathematics [40 marks]

Alternative (for FM students only)

Using shell method,

$$2\pi \int_{-3}^{-\frac{\sqrt{45}}{2}} x \left(2\sqrt{\frac{4x^2 - 36}{9}} \right) dx = 9.42 \text{ (to 3 s.f.)}$$

Qn	Suggested Solution
2(a)	$w^3 = (2 - 3i)^3$
	$=(2)^{3}-3(2)^{2}(3i)+3(2)(3i)^{2}-(3i)^{3}$
	= 8 - 36i - 54 + 27i
	= -46 - 9i
(b)	Since w is a root, $(2-3i)^3 - 5(2-3i)^2 + a(2-3i) + b = 0$
	(-46-9i) - 5(4-12i-9) + (2a+b-3ai) = 0
	(-21+2a+b) + (51-3a)i = 0
	$51-3a=0 \implies a=17$
	$-21+2(17)+b=0 \implies b=-13$
(c)	Since w is a root of $z^3 - 5z^2 + 17z - 13 = 0$,
	w^* is also a root as all the coefficients are real.
	$\therefore z^3 - 5z^2 + 17z - 13 = (z - w)(z - w^*)(z - \alpha)$
	Replace z by $\frac{z}{i}$,
	$\left(\frac{z}{i}\right)^3 - 5\left(\frac{z}{i}\right)^2 + 17\left(\frac{z}{i}\right) - 13 = \left(\left(\frac{z}{i}\right) - w\right)\left(\left(\frac{z}{i}\right) - w^*\right)\left(\left(\frac{z}{i}\right) - \alpha\right)$
	Multiply by i ³ on both sides,
	$z^{3} - 5i z^{2} - 17z + 13i = (z - iw)(z - iw^{*})(z - i\alpha)$
	A possible cubic polynomial is $z^3 - 5i z^2 - 17z + 13i$.



	$=\sqrt{(4-0)^2 + (16+4)^2} = \sqrt{416}$
	Hence, $a > 416$ so that the equation will have 1 negative real root.
(c)	Intersection point of the 2 asymptotes is (4, 16)
	Thus,
	$\tan^{-1}(4) < \arg(z - 4 - 16i) < \frac{\pi}{2}$
	Or
	$-(\pi - \tan^{-1}(4)) < \arg(z - 4 - 16i) < -\frac{\pi}{2}$

Qn	Suggested Solutions
4 (a)	$\int \frac{1}{\overline{QA}} \mu \overline{QQ} + (1-\mu) \overline{QP}$
	$\overline{OA} = \frac{\mu OQ + (1 - \mu)OP}{\mu + (1 - \mu)}$
	$\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$
	$= \mu \begin{pmatrix} 0 \\ 2 \\ -t \end{pmatrix} + (1 - \mu) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
	(-t) (0)
	$\left(1-\mu\right)$
	$= \begin{pmatrix} 1-\mu\\ 2\mu\\ -t\mu \end{pmatrix}$
	$\overline{OB} = \frac{\mu \overline{OR} + (1 - \mu) \overline{OQ}}{\mu + (1 - \mu)}$
	$OB = \frac{\mu + (1 - \mu)}{\mu + (1 - \mu)}$
	$= \mu \begin{pmatrix} 0\\0\\t \end{pmatrix} + (1-\mu) \begin{pmatrix} 0\\2\\-t \end{pmatrix}$
	$= \begin{pmatrix} 0 \\ 2-2\mu \\ t+2t\mu \end{pmatrix}$
	$\left(-i+2i\mu\right)$
	$\boxed{\overline{AB}} = \begin{pmatrix} 0\\2-2\mu\\-t+2t\mu \end{pmatrix} - \begin{pmatrix} 1-\mu\\2\mu\\-t\mu \end{pmatrix} = \begin{pmatrix} \mu-1\\2-4\mu\\-t+3t\mu \end{pmatrix}}$
	$\begin{bmatrix} AB - \begin{pmatrix} 2-2\mu \\ -t+2t\mu \end{pmatrix} - \begin{pmatrix} 2\mu \\ -t\mu \end{pmatrix} - \begin{pmatrix} 2-4\mu \\ -t+3t\mu \end{pmatrix}$
(b)	Clearly,
	$\overrightarrow{OA} \neq k\overrightarrow{OB}$
	This means the points are not collinear.

(c)	(3)
	$\overline{AB} \cdot \begin{vmatrix} 4 \end{vmatrix}$
	$\begin{pmatrix} 0 \end{pmatrix}$ 1
	$\frac{1}{\left \left(3\right)\right } = \frac{1}{5}$
	4
	$\left(\begin{array}{c} \mu - 1 \end{array}\right) \left(3\right)$
	$2-4\mu$ • 4
	$\frac{\begin{pmatrix} \mu - 1\\ 2 - 4\mu\\ -t + 3t\mu \end{pmatrix} \cdot \begin{pmatrix} 3\\ 4\\ 0 \end{pmatrix}}{\begin{vmatrix} 3\\ 4 \end{vmatrix}} = \frac{1}{5}$
	$\left \begin{array}{c} 3 \end{array} \right = \overline{5}$
	4
	$3\mu - 3 + 8 - 16\mu = \pm 1$
	$13\mu = 4 \text{ or } 6$
	$\mu = \frac{4}{13} \text{ or } \frac{6}{13}$
(d)	If angle <i>AOB</i> is a right angle, then
	$\overline{OA} \bullet \overline{OB} = 0$
	$ \begin{pmatrix} 1-\mu\\ 2\mu\\ -t\mu \end{pmatrix} \cdot \begin{pmatrix} 0\\ 2-2\mu\\ -t+2t\mu \end{pmatrix} = 0 $
	$2\mu \mid 2-2\mu \mid = 0$
	$\left(-t\mu\right)\left(-t+2t\mu\right)$
	$4\mu - 4\mu^2 + t^2\mu - 2t^2\mu^2 = 0$
	<u>Method 1</u> 4 - 4 - 2 + 2 - 2 + 2 - 2 + 2 - 0
	$4\mu - 4\mu^2 + t^2\mu - 2t^2\mu^2 = 0$
	$\mu = 0$ or $4 - 4\mu + t^2 - 2t^2\mu = 0$
	(reject :: $0 < \mu < 1$) $\mu = \frac{4 + t^2}{4 + 2t^2}$
	Clearly, $\frac{4+t^2}{4+2t^2} > 0$ since $4+t^2 > 0$ and $4+2t^2$ for all $t \in \mathbb{R}$.
	Since $0 < \mu < 1$,
	$\frac{4+t^2}{1-2t^2} < 1$
	$\frac{4+t^{2}}{4+2t^{2}} < 1$ $4+t^{2} < 4+2t^{2}$ $t^{2} > 0$
	$\tau + \iota > \tau + 2\iota$ $t^2 > 0$
	Hence $t \in \mathbb{R} \setminus \{0\}$

Method 2
Since $0 < \mu < 1$,
$4 - 4\mu + t^2 - 2t^2\mu = 0$
$t^2 = \frac{4(1-\mu)}{2}$
$l = \frac{2\mu - 1}{2\mu - 1}$
From the graph of t^2 vs μ for $0 < \mu < 1$,
$t^2 > 0$ or $t^2 < -4$ (no solutions for t)
then $t \in \mathbb{R} \setminus \{0\}$.

(c)
$$\frac{dx}{d\theta} = 1 - \sin \theta - \theta \cos \theta, \ \frac{dy}{d\theta} = \sin \theta$$
$$\frac{dy}{dx} = \frac{\sin \theta}{1 - \sin \theta - \theta \cos \theta}$$
Since tangent at *P* is parallel to $y = 2x$
$$\frac{\sin \theta}{1 - \sin \theta - \theta \cos \theta} = 2$$
$$\frac{\sin \theta}{3 \sin \theta + 2\theta \cos \theta - 2 = 0}$$
From GC: $\theta = 0.42230$ ($: 0 \le t \le \frac{\pi}{2}$)
 $: P(0.249, 0.0879)$
(d) Area enclosed
$$= \int_{0}^{t} x \, dy$$
$$= \int_{0}^{\frac{\pi}{2}} \theta [\sin \theta (1 - \sin \theta)] \, d\theta$$
$$u = \theta, \ \frac{dv}{d\theta} = \sin \theta (1 - \sin \theta)$$
$$\frac{du}{d\theta} = 1, \ v = -\cos \theta - \frac{\theta}{2} + \frac{\sin 2\theta}{4}$$
$$= \left[\theta \left(-\cos \theta - \frac{\theta}{2} + \frac{\sin 2\theta}{4} \right) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \left(-\cos \theta - \frac{\theta}{2} + \frac{\sin 2\theta}{4} \right) d\theta$$
$$= \left[\theta \left(-\cos \theta - \frac{\theta}{2} + \frac{\sin 2\theta}{4} \right) \right]_{0}^{\frac{\pi}{2}} + \left[\sin \theta + \frac{\theta^{2}}{4} + \frac{\cos 2\theta}{8} \right]_{0}^{\frac{\pi}{2}}$$
$$= \left[\frac{\pi}{2} \left(-\frac{\pi}{4} \right) \right] + \left[\left[1 + \frac{\pi^{2}}{16} - \frac{1}{8} \right] - \frac{1}{8} \right]$$
$$= \frac{3}{4} - \frac{\pi^{2}}{16}$$

(e) Gradient of $L = 2$
$$\Rightarrow \text{ angle btw } L \text{ and } x - axis = \tan^{-1} 2$$
$$\beta = \tan^{-1} 2 - \frac{\pi}{6}$$
$$\tan^{-1} \frac{1 - \cos \theta}{\theta(1 - \sin \theta)} = \tan^{-1} 2 - \frac{\pi}{6}$$
From GC: $\theta = 0.596 \text{ rad.} (3 \text{ sf})$

Alternative
Use dot product,
$\begin{pmatrix} 1 \end{pmatrix} \left(\theta (1 - \sin \theta) \right)$
$2 1 - \cos \theta$
$\cos \frac{\pi}{1} = \frac{\overrightarrow{OR} \cdot \overrightarrow{OQ}}{ \overrightarrow{OQ} } = \frac{\left(0\right)\left(0\right)}{ \overrightarrow{OQ} } = \frac{\theta(1-\sin\theta) + 2(1-\cos\theta)}{ \overrightarrow{OQ} }$
Use dot product, $\cos \frac{\pi}{6} = \frac{\overrightarrow{OR} \cdot \overrightarrow{OQ}}{\left \overrightarrow{OR}\right \left \overrightarrow{OQ}\right } = \frac{\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix} \begin{pmatrix} \theta(1-\sin\theta)\\ 1-\cos\theta\\ 0 \end{pmatrix}}{\left \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}\right \begin{pmatrix} \theta(1-\sin\theta)\\ 1-\cos\theta\\ 1-\cos\theta\\ 0 \end{pmatrix}\right } = \frac{\theta(1-\sin\theta) + 2(1-\cos\theta)}{\sqrt{5}\sqrt{(\theta(1-\sin\theta))^2 + (1-\cos\theta)^2}}$ From GC : $\theta = 0.596$ rad. (3 sf)
$2 1 - \cos \theta$
From GC : $\theta = 0.596$ rad. (3 sf)
<u>Note</u> : The other case where $\tan^{-1} 2 + \alpha > \frac{\pi}{2}$ need not be considered as there would be
no solution.

Qn	Suggested Solution
6(a)	Ways = $(7-1) > {}^7C_3 > 3!$
	= 151200
b(i)	TYRANOSU
	RAN
	<u>Case 1</u>
	All 5 different letters (ie. No identical)
	$= {}^{8}C_{5} \times 5! = 6720$
	<u>Case 2</u>
	2 identical (RR, AA or NN)
	$= {}^{3}C_{1} \times {}^{7}C_{3} \times \frac{5!}{2!} = 6300$
	Total ways = $6720 + 6300 = 13020$
b(ii)	Method 1
	Reduced sample space $=\frac{1}{{}^{8}C_{2}}=\frac{1}{28}$
	Method 2a
	Conditional probability
	$= \frac{P(2R2N \cap "RAN")}{P(2R2N \cap "RAN")}$
	$=$ $\frac{P("RAN")}{P("RAN")}$
	$= \frac{\text{no. of ways} (2R2N \cap "RAN")}{2R2N \cap "RAN"}$
	$= \frac{1}{\text{no. of ways ("RAN")}}$
	$=\frac{3!}{{}^{8}C_{2}\times3!}$
	1
	$=\frac{1}{28}$
	Method 2b
	Conditional probability
	$=\frac{P(2R2N \cap "RAN")}{P(2R2N \cap "RAN")}$
	P("RAN")
	$=\frac{\frac{2}{11}\times\frac{2}{10}\times\frac{2}{9}\times\frac{1}{8}\times\frac{1}{7}\times3!}{\frac{2}{11}\times\frac{2}{10}\times\frac{2}{9}\times\frac{1}{8}\times\frac{1}{7}\times^{8}C_{2}\times3!}$
	$\frac{2}{11} \times \frac{2}{10} \times \frac{2}{9} \times \frac{1}{8} \times \frac{1}{7} \times {}^{8}C_{2} \times 3!$
	$=\frac{1}{2}$
	28

Section B: Probability and Statistics [60 marks]

Qn	Suggested Solution
7(a)(i)	$P(A \cap B)$
	= P(fall, rise, rise) + P(fall, fall, rise)
	$= (0.4 \times 0.15 \times 0.6) + (0.4 \times 0.85 \times 0.15)$
	= 0.087
(ii)	P(<i>B</i>)
	$= \mathbf{P}(A \cap B) + \mathbf{P}(A' \cap B)$
	= 0.087 + P(rise, rise, rise) + P(rise, fall, rise)
	$= 0.087 + (0.6 \times 0.6 \times 0.6) + (0.6 \times 0.4 \times 0.15)$
	= 0.339
(iii)	P(B A)
	$=\frac{\mathbf{P}(B \cap A)}{\mathbf{P}(B \cap A)}$
	$- \frac{1}{P(A)}$
	_ 0.087
	0.4
	= 0.2175
(b)	Since $P(B A) = 0.2175 \neq 0.339 = P(B)$, A and B are not independent.
(c)	Let W be the number of Tuesdays in which the unit price of X rises, out of 12 Tuesdays. W ~ B(12,0.6)
	P(W = 5) = 0.101 (3 s.f.)

Qn	Suggested Solution
8 (a)	• Set <i>B</i> will have a larger <i>r</i> /.
	• The data points for Set <i>B</i> lie relatively closer to a straight line with negative
	gradient whereas Set A's $ r $ value will be closer to 0 since the data points are more
	scattered with weak linear correlation between x and y.
(b)(i)	V
	∮ 54 ↑
	45~
	45,5 55.5
(ii)	Model C: $r = 0.81730 = 0.817$ (3 sf)
	Model <i>D</i> : $r = 0.93944 = 0.939$ (3 sf)
	Since $ r $ value for model D is closer to 1 compared to model C, it indicates a stronger
	linear correlation. Hence model <i>D</i> is more appropriate.
(iii)	Equation of regression line of y on x for Model D :
	$y = 45.423 + 8.5357 \times 10^{-12} e^{\frac{1}{2}x}$
	When $x = 50$, $y = 46.0376$
	The mean household expenditure is estimated to be \$46 038
	The estimate is reliable since it is an interpolation where $x = 50$ ($45.5 \le x \le 55.5$) and
	$ \mathbf{r} $ is close to 1 which indicates a strong positive linear correlation between x and y.
(iv)	It is not valid because correlation between income and expenditure does not imply
	causation.
(v)	Not true of the number of the
	Not true, as the product moment correlation coefficient for $y = a + be^{\frac{1}{2}x}$ measures the
	linear correlation between y and $e^{\frac{1}{2}x}$, not y and $e^{\frac{1}{20}x}$.
	initial contration between y and ϵ , not y and ϵ^{-1} .
	Alternative
	Not true. For $y = p + qe^{\frac{1}{20}x}$, the product moment correlation coefficient is 0.8639998
	= 0.864 (3.s.f), which is different.

Qn	Suggested Solution
9(a)	Let <i>X</i> be the mass of a randomly chosen mooncake.
	$H_0: \mu = 150$
	$H_1: \mu < 150$
	where μ is the population mean mass of mooncakes.
	Since sample size of 9 is small, assume <i>X</i> follows a normal distribution.
	$= 10^{-10} (100^{-10} 6.73^2)$
	Under H ₀ , $\bar{X} \sim N\left(150, \frac{6.73^2}{9}\right)$
	From GC, p -value = 0.186322 = 0.186 (3 s.f.)
	Since the n-value > 0.1 , we do not reject H, and conclude that there is insufficient avidence.
	Since the <i>p</i> -value > 0.1, we do not reject H_0 and conclude that there is insufficient evidence at the 10% significance level that the mean mass of the mooncake is less than 150 g, i.e.
	insufficient evidence to reject owner's claim.
9(b)	Let <i>Y</i> be the working hours of a randomly chosen teacher in the school.
2 (0)	$n = 50k^2$. 2
	$s^2 = \frac{n}{n-1}$ (sample variance) $= \frac{50k^2}{49}$ hours ²
	$H_0: \mu = 60$
	$H_1: \mu \neq 60$
	$ \begin{pmatrix} k^2 \end{pmatrix}$
	Under H_0 , $\overline{Y} \sim N\left(60, \frac{k^2}{49}\right)$ approximately by Central
	(49)
	Limit Theorem since sample size of 50 is large.
	In order to reject H_0 , p-value = $2P(\overline{Y} \ge 62) \le 0.05$
	From GC (graph), $0 < k \le 7.14299$
	Set of values of k is $\{k \in \mathbb{R} : 0 < k \le 7.14\}$.
	Alternative
	In order to reject H_0 ,
	y must lie within the critical region. i.e, $y \ge y_{critical}$
	$\therefore \overline{y}_{\text{critical}} \le 62$
	From GC (graph), $0 < k \le 7.14$ (to 3sf)
	Set of values of k is $\{k \in \mathbb{R} : 0 < k \le 7.14\}$.

Qn	Suggested Solution
10(a)	
	558 580 646 x
(b)	$X \sim N(580,22^2)$
	Expected number = $300 \times P(X > 600)$
	$=300 \times 0.18165$
	= 54.495
	= 54.5 (3 s.f.)
(c)	No. By combining the masses, it would give a distribution with 2 peaks instead of a single peak.
(d)	Let <i>K</i> and <i>L</i> be the selling price of a randomly chosen rock melon and watermelon respectively. K = 0.003X, $L = 0.0028Y$
	$K \sim N(0.003 \times 580, \ 0.003^2 \times 22^2)$
	$K \sim N(1.74, 0.004356) \Rightarrow \overline{K} \sim N\left(1.74, \frac{0.004356}{4}\right)$
	$L \sim N(0.0028 \times 870, 0.0028^2 \times 30^2)$
	$L \sim N(2.436, 0.007056)$
	$\overline{K} - L \sim N(-0.696, 0.008145)$
	$\mathbf{P}(\left \bar{K}-L\right \le 0.60)$
	$= P(-0.60 \le \bar{K} - L \le 0.60)$
	= 0.14373
	= 0.144 (3s.f.)
(e)	$K_1 + \dots + K_n \sim N(1.74n, 0.004356n)$
	$L_1 + \dots + L_{20-n} \sim N(2.436(20-n), 0.007056(20-n))$
	Let W be the total cost of the 20 melons. W = K + K + L + L
	$W = K_1 + \dots + K_n + L_1 + \dots + L_{20-n}$ W ~ N(1.74n + 2.436(20 - n), 0.004356n + 0.007056(20 - n))
	$W \sim N(1.74n + 2.450(20 - n), 0.004350n + 0.007050(20 - n))$ P(W > 38) > 0.95
	Using GC table,
	n = 13, $P(W > 38) = 1 > 0.95$
	n = 14, $P(W > 38) = 0.9988 > 0.95$
	n = 15, $P(W > 38) = 0.8113 < 0.95$
	Greatest $n = 14$

Qn	Suggested Solution
11(a)	$\sum_{r=1}^{\infty} \mathbf{P}(X=r) = 1$
	$\sum_{n=1}^{\infty} \frac{a}{r^3} = 1$
	$a = \frac{1}{1.2021} = 0.83188 = 0.832 \ (3 \text{ sf})$
(b)	$E(X) = \sum_{r=1}^{\infty} r P(X = r) = a \sum_{r=1}^{\infty} \frac{1}{r^2} = 1.37 (3 \text{ s.f})$
	$E(X^{2}) = \sum_{r=1}^{\infty} r^{2} P(X = r) = a \sum_{r=1}^{\infty} \frac{1}{r} \text{ does not exist.}$
	Therefore $Var(X)$ cannot be calculated.
(c)	Method 1 Method 2
	$P(X \ge 2 \mid X \le 15) \qquad P(X \ge 2 \mid X \le 15)$
	$=1-P(X=1 X\le 15) = \frac{P(2\le X\le 15)}{P(X\le 15)}$
	$=1-\frac{P(X=1)}{P(X \le 15)} \qquad \qquad P(X \le 15)$
	$P(X \le 15)$ $\sum_{i=1}^{15} \frac{a_{i}}{a_{i}}$
	$=1 - \frac{a}{\sum_{r=2}^{15} \frac{a}{r^{3}}} = \frac{\sum_{r=2}^{15} \frac{a}{r^{3}}}{\sum_{r=1}^{15} \frac{a}{r^{3}}}$
	$=1 - \frac{a}{\sum_{j=1}^{15} \frac{a}{r^3}} = \frac{\frac{r-2}{15}}{\sum_{j=1}^{15} \frac{a}{r^3}}$
	= 0.16665 = 0.167 (3 s.f) = 0.16665 = 0.167 (3 s.f)
(d)	$Y \sim B(10, P(X = 3))$ where $P(X = 3) = \frac{a}{27} = \frac{0.83188}{27} = 0.030810$
	$P(Y > 2) = 1 - P(Y \le 2) = 0.00298$
(e)	Note: X_1 and Y are dependent variables.
	<u>Case 1:</u> $X_1 = 1$ and $Y = 2$
	The first number must be a '1' and the rest of 9 numbers must have two '3's. $\overline{1}$
	$P(X = 1) \left[\binom{9}{2} (P(X = 3))^2 (1 - P(X = 3))^7 \right] = 0.022835$
	<u>Case 2</u> : $X_1 = 2$ and $Y = 1$
	The first number must be a '2' and the rest of 9 numbers must have one '3'.
	$P(X = 2) \left[\binom{9}{1} (P(X = 3)) (1 - P(X = 3))^{8} \right] = 0.022448$
	<u>Note:</u> $X_1 = 3$ and $Y = 0$
	This case is impossible as Y is counting the number of '3' generated, probability is 0 for this case.
	$\therefore P(X_1 + Y = 3) = 0.022835 + 0.022448 + 0 = 0.0453 (3 \text{ sf})$